Flyttande genomsnittlig prognostisering. Introduktion Som du kanske antar vi tittar på några av de mest primitiva tillvägagångssätten för prognoser Men förhoppningsvis är dessa åtminstone en värdefull introduktion till några av de datorproblem som är relaterade till att implementera prognoser i kalkylblad. I den här venen fortsätter vi med Börja i början och börja arbeta med Moving Average Forecasts. Moving Average Prognoser Alla är bekanta med att flytta genomsnittliga prognoser oavsett om de tror att de är Alla studenter gör dem hela tiden Tänk på dina testresultat i en kurs där du ska Har fyra tester under terminen Låt oss anta att du fick 85 på ditt första test. Vad skulle du förutse för ditt andra testresultat. Vad tycker du att din lärare skulle förutsäga för nästa testresultat. Vad tycker du att dina vänner kan förutsäga för din nästa testpoäng. Vad tycker du att dina föräldrar kan förutsäga för nästa testresultat. Oavsett om du blabbar kan du göra din fr Älskar och föräldrar, de och din lärare förväntar mycket sannolikt att du får något i det område du bara har fått. Väl, nu låt oss anta att trots din självbefrämjande till dina vänner överskattar du dig själv Och figur du kan studera mindre för det andra testet och så får du en 73. Nu vad är alla berörda och oroade kommer att förutse att du kommer att få på ditt tredje test Det finns två mycket troliga metoder för att utveckla en uppskattning oavsett Om de kommer att dela den med dig. De kan säga till sig själva: Den här killen sprider alltid rök om hans smarts. Han kommer att få ytterligare 73 om han är lycklig. Måste föräldrarna försöker vara mer stödjande och säga, ja, så Långt har du fått en 85 och en 73, så kanske du borde räkna med att få en 85 73 2 79 Jag vet inte, kanske om du gjorde mindre fester och inte vågade väsen överallt och om du började göra en mycket mer studerar du kan få en högre poäng. Båda dessa uppskattningar är faktiska Långa rörliga genomsnittliga prognoser. Den första använder endast din senaste poäng för att prognostisera din framtida prestation. Detta kallas en glidande genomsnittlig prognos med en dataperiod. Den andra är också en glidande genomsnittlig prognos men använder två dataperioder. Låt oss anta Att alla dessa människor bråkar på ditt stora sinne, har gissat dig och du bestämmer dig för att göra det bra på det tredje testet av dina egna skäl och att lägga en högre poäng framför dina allierade. Du tar testet och din poäng är faktiskt en 89 Allting, inklusive dig själv, är imponerad. Så nu har du det sista provet på terminen som kommer upp och som vanligt känns det som om du behöver göra alla förutspåringar om hur du ska göra det sista testet. Förhoppningsvis ser du mönster. Nu kan du förhoppningsvis se mönstret. Vad tror du är det mest exakta. Hälsa medan vi arbetar Nu återvänder vi till vårt nya rengöringsföretag som startas av din främmande halvsyster kallas Whistle medan vi arbetar. Du har några tidigare försäljningsdata Representeras av följande avsnitt från ett kalkylblad Vi presenterar först data för en treårs glidande medelprognos. Inträdet för cell C6 borde vara. Nu kan du kopiera den här cellformeln ner till de andra cellerna C7 till och med C11. Notera hur genomsnittet rör sig Över de senaste historiska data men använder exakt de tre senaste perioderna som finns tillgängliga för varje förutsägelse. Du bör också märka att vi inte behöver verkligen göra förutsägelserna för de senaste perioderna för att utveckla vår senaste förutsägelse. Detta är definitivt annorlunda än Exponentiell utjämningsmodell I ve inkluderade tidigare förutsägelser eftersom vi kommer att använda dem på nästa webbsida för att mäta prediktionsgiltighet. Nu vill jag presentera de analoga resultaten för en tvåårs glidande medelprognos. Inträdet för cell C5 borde vara. Nu kan kopiera den här cellformeln ner till de andra cellerna C6 till och med C11.Notice hur nu används bara de två senaste bitarna av historiska data för varje förutsägelse igen jag har med D de senaste förutsägelserna för illustrativa ändamål och för senare användning i prognosvalidering. Några andra saker som är viktiga att notera. För en m-periods rörlig genomsnittlig prognos används endast de senaste datavärdena för att göra förutsägelsen. Inget annat är nödvändigt. . För en m-period glidande medelprognos när du gör tidigare förutsägelser märker du att den första förutsägelsen sker i period m 1.But av dessa problem kommer att vara väldigt signifikant när vi utvecklar vår kod. Utveckling av rörlig genomsnittsfunktion Nu behöver vi utveckla Koden för det glidande medelprognosen som kan användas mer flexibelt Koden följer Observera att ingångarna är för antalet perioder du vill använda i prognosen och i rad historiska värden. Du kan lagra den i vilken arbetsbok du vill. Funktion MovingAverage Historical, NumberOfPeriods As Single Declaration och initialisering av variabler Dim Item Som variant Dim Counter som integer Dim ackumulering som Single Dim HistoricalSize som heltal. Initialiserande variabler Counter 1 Accumulation 0. Bestämning av storleken på Historical array HistoricalSize. For Counter 1 till NumberOfPeriods. Ackumulera lämpligt antal senast tidigare observerade värden. Akkumuleringsackumulering Historisk historisk storlek - AntalOfPeriods Counter. MovingAverage Accumulation NumberOfPeriods. Koden kommer att förklaras i klassen. Du vill placera funktionen på kalkylbladet så att resultatet av beräkningen visas där den ska som följande. Moving Average - MA. BREAKING DOWN Moving Average - MA. As ett SMA-exempel, överväga en säkerhet med följande stängningskurser över 15 dagar. Vecka 1 5 dagar 20, 22, 24, 25, 23.Week 2 5 Dagar 26, 28, 26, 29, 27.Veek 3 5 dagar 28, 30, 27, 29, 28.A 10-dagars MA skulle genomsnittliga slutkurserna för de första 10 dagarna som första datapunktet Nästa datapunkt skulle släppa det tidigaste priset, lägga till priset på dag 11 och ta medeltalet och så vidare som visas nedan. Som tidigare noterat lagrar MAs nuvarande prisåtgärd eftersom de är baserade på tidigare priser, ju längre tid för MA, den större fördröjning Således kommer en 200-dagars MA att ha am okej större grad av fördröjning än en 20-dagars MA eftersom den innehåller priser för de senaste 200 dagarna. MA: s längd som ska användas beror på handelsmålen, med kortare MAs som används för korttidshandling och längre terminer som är mer lämpade för långsiktiga investerare 200-dagars MA följs i stor utsträckning av investerare och handlare, med raster över och under detta glidande medel anses vara viktiga handelssignaler. MAs ger också viktiga handelssignaler på egen hand eller när två genomsnitt överstiger en stigande MA indikerar att säkerheten är i en uptrend medan en minskande MA indikerar att den är i en downtrend På liknande sätt är uppåtgående momentum bekräftat med en haussead crossover som uppträder när en kortsiktig MA passerar över en längre sikt MA Nedåtgående momentum bekräftas med en baisse crossover som uppstår när en kortsiktig MA passerar under en längre sikt MA. Moving Averages Hur man använder dem. Några av de primära funktionerna i ett glidande medelvärde är att identifiera trender och reverseringar mäta styrkan av en aktiv s moment och bestämma potentiella områden där en tillgång kommer att hitta stöd eller motstånd I det här avsnittet kommer vi att påpeka hur olika tidsperioder kan övervaka momentum och hur glidande medelvärden kan vara fördelaktiga vid inställning av stoppförluster. Dessutom kommer vi att ta upp några av Möjligheterna och begränsningarna för att flytta medelvärden som man bör överväga när man använder dem som en del av en trading rutin Trend Identifying trender är en av de viktigaste funktionerna för glidande medelvärden, som används av de flesta handlare som försöker göra trenden sin vän Flytta genomsnittsvärden är nedslående indikatorer vilket innebär att de inte förutsäger nya trender men bekräftar trenderna när de har fastställts. Som du kan se i Figur 1, anses ett lager vara i en uptrend när priset ligger över ett glidande medelvärde och medeltalet är sluttande uppåt Omvänt kommer en näringsidkare att använda ett pris under ett nedåtgående sluttande medel för att bekräfta en nedgång. Många handlare kommer bara att överväga att hålla en lång position i en tillgång när e-priset handlar över ett glidande medelvärde Denna enkla regel kan hjälpa till att se till att trenden fungerar i handlarens favor. Momentum Många nybörjare handlar om hur det är möjligt att mäta momentum och hur glidande medelvärden kan användas för att hantera en sådan prestation. Det enkla svaret är att vara noga med de tidsperioder som används för att skapa medelvärdet, eftersom varje tidsperiod kan ge värdefull inblick i olika typer av momentum. Generellt kan kortsiktiga momentum mätas genom att titta på glidande medelvärden som fokuserar på tidsperioder på 20 dagar eller mindre Att se på glidande medelvärden som skapas med en period av 20 till 100 dagar betraktas allmänt som ett bra mått på medellång sikt. Slutligen kan varje glidande medelvärde som använder 100 dagar eller mer i beräkningen användas som ett mått av långsiktigt momentum Förnuft bör berätta att ett 15-dagars glidande medelvärde är en lämpligare åtgärd av kortsiktig moment än ett 200-dagars glidande medelvärde. En av de bästa metoderna för att bestämma styrkan a ndriktning av en aktiv s moment är att placera tre glidande medelvärden på ett diagram och sedan uppmärksamma hur de staplar upp i förhållande till varandra De tre glidande medelvärdena som brukar användas har olika tidsramar i ett försök att representera kortvariga term, medellång och långsiktig prisrörelse I figur 2 ses stark uppåtgående moment när kortfristiga medelvärden ligger över långsiktiga medelvärden och de två genomsnittet är divergerande Omvänt när de kortare genomsnitten ligger under längre sikt är momentet i nedåtriktad riktning. Stöd En annan gemensam användning av glidande medelvärden är att bestämma potentiella prisstöd. Det tar inte mycket erfarenhet av att hantera glidande medelvärden för att se att det fallande priset på en tillgång ofta kommer att stanna och omvänd riktning på samma nivå som ett viktigt medelvärde. Exempelvis kan man se i Figur 3 att 200-dagars glidande medel kunde förhöja priset på beståndet efter att det föll från det är nära 32 Många näringsidkare kommer att förutse en studsning av stora glidande medelvärden och kommer att använda andra tekniska indikatorer som bekräftelse på det förväntade flyget. Resurser När priset på en tillgång faller under en inflytelserik stödnivå, som 200-dagars rörelse i genomsnitt är det inte ovanligt att se den genomsnittliga akten som en stark barriär som hindrar investerare från att pressa priset tillbaka över det genomsnittet. Som du kan se från tabellen nedan används denna resistens ofta av handlare som ett tecken för att ta vinst eller att stänga av befintliga långa positioner Många korta säljare kommer också att använda dessa medelvärden som ingångspunkter eftersom priset ofta stöter på motståndet och fortsätter att flytta sig lägre Om du är en investerare som håller en lång position i en tillgång som handlar under stora rörelser medelvärden kan det vara i ditt intresse att titta på dessa nivåer noga, eftersom de kan påverka värdet av din investering väsentligt. Stopp-förluster Medelvärden gör dem till ett bra verktyg för att hantera risken. Att kunna flytta medelvärden för att identifiera strategiska ställen för att fastställa slutförlustorder gör att näringsidkare kan skära av förlorade positioner innan de kan växa något större. Som du kan se i Figur 5, handlar näringsidkare som håller en lång position i ett lager och sätta sina order för förlustförlust under inflytelserika medelvärden kan spara sig mycket pengar Med hjälp av glidande medelvärden för att ställa in förlustorder är nyckeln till en lyckad handelsstrategi.
No comments:
Post a Comment